model_maxent Generate maxent.jar or maxnet model
model_maxent.Rd
This functions generates maxent.jar or maxnet models using ENMeval 2.0 and user provided tuning parameters.
Usage
model_maxent(
occs,
bg,
user.grp,
bgMsk,
rms,
rmsStep,
fcs,
clampSel,
algMaxent,
catEnvs = NULL,
parallel = FALSE,
numCores = NULL,
logger = NULL,
spN = NULL
)
Arguments
- occs
data frame of cleaned or processed occurrences obtained from components occs: Obtain occurrence data or, poccs: Process occurrence data.
- bg
coordinates of background points to be used for modeling.
- user.grp
a list of two vectors containing group assignments for occurrences (occs.grp) and background points (bg.grp).
- bgMsk
a RasterStack or a RasterBrick of environmental layers cropped and masked to match the provided background extent.
- rms
vector of range of regularization multipliers to be used in the ENMeval run.
- rmsStep
step to be used when defining regularization multipliers to be used from the provided range.
- fcs
feature classes to be tested in the ENMeval run.
- clampSel
Boolean use of clamping in the model.
- algMaxent
character. algorithm to be used in modeling. A selection of "maxnet" or "maxent.jar".
- catEnvs
if categorical predictor variables are included must provide the names.
- parallel
logical. Whether to use parallel in the generation of models. Default is FALSE
- numCores
numeric. If using parallel how many cores to use. Default is NULL.
- logger
Stores all notification messages to be displayed in the Log Window of Wallace GUI. Insert the logger reactive list here for running in shiny, otherwise leave the default NULL.
- spN
character. Species name to be used for all logger messages.
Value
Function returns an ENMevaluate object with all the evaluated models and a selection of appropriate fields.
Details
The function generates model in ENMeval using a user provided partition of occurrences from previous components in the GUI. User can activate clamping and input tuning arguments to be used for model building.
Examples
if (FALSE) { # \dontrun{
envs <- envs_userEnvs(rasPath = list.files(system.file("extdata/wc",
package = "wallace"),
pattern = ".tif$", full.names = TRUE),
rasName = list.files(system.file("extdata/wc",
package = "wallace"),
pattern = ".tif$", full.names = FALSE))
occs <- read.csv(system.file("extdata/Bassaricyon_alleni.csv",
package = "wallace"))
bg <- read.csv(system.file("extdata/Bassaricyon_alleni_bgPoints.csv",
package = "wallace"))
partblock <- part_partitionOccs(occs, bg, method = 'block')
rms <- c(1:2)
rmsStep <- 1
fcs <- c('L', 'LQ')
m <- model_maxent(occs = occs, bg = bg, user.grp = partblock,
bgMsk = envs, rms = rms, rmsStep, fcs,
clampSel = TRUE, algMaxent = "maxnet",
parallel = FALSE)
} # }